Team 19 CNT Reinforced Ceramics 3D Printer Midterm I Presentation

Advisors

Dr. Cheryl Xu, FSU Dr. Wei Guo, FSU Dr. Yong Huang, UF

Team Members

Ernest Etienne, M.E.

Cody Evans, I.E.

Basak Simal, M.E.

Daphne Solis, I.E.

Sonya Peterson, M.E.

Sam Yang, M.E.

Course Professors

Dr. James Dobbs Dr. Nikhil Gupta Dr. Okenwa Okoli Dr. Chiang Shih

Contents

- Introduction and Background
- Polymer Matrix
- Testing / Experiments
- Renderings
- Current Actions
- Budget

Team 19

2 of 18

- Challenges Faced, Lessons Learned
- Conclusion

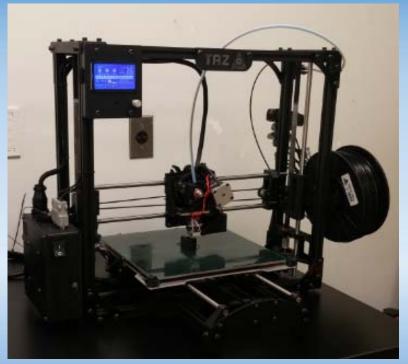
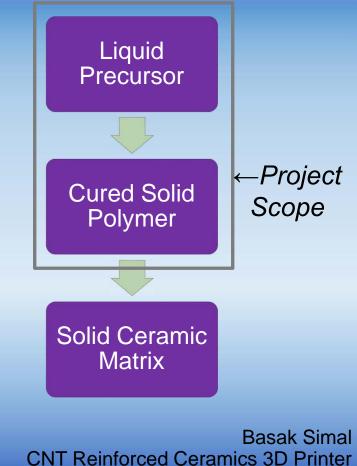
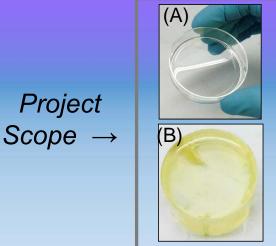



Figure 1. The TAZ 3D printer to be retrofitted.

Introduction and Background

- Goal: print solid parts using liquid polymer precursor
 - Additive manufacturing allows creation of arbitrary part geometry with no wasted material
- **Scope**: Retrofitting a 3D printer to extrude the liquid polymer precursor and curing the precursor layers during the print job

Team 19 3 of 18

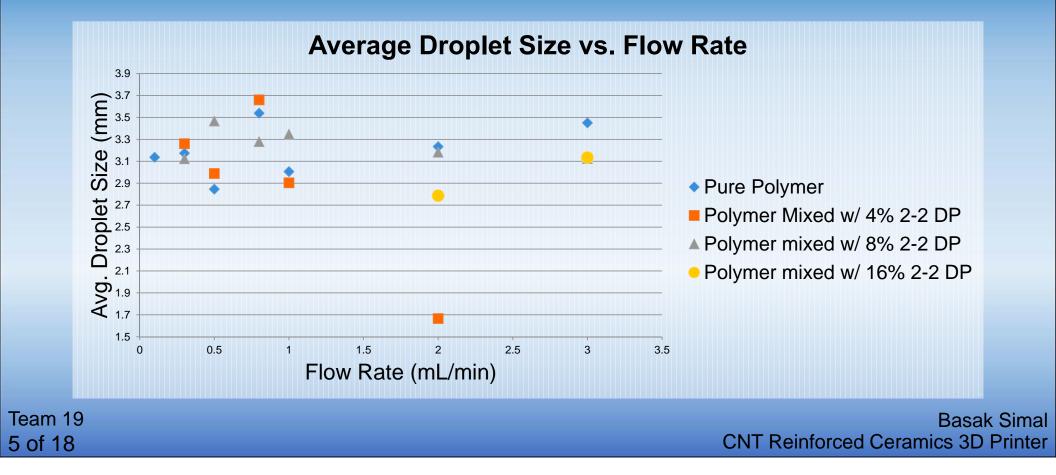

Polymer Matrix

- Low viscosity liquid polymer matrix
- Curing reagent added for solidification
 - Heat or UV light options available
 - Reagents to control curing time
- Precursor for ceramic material
- Nanopowders

Team 19

4 of 18

- Carbon Nanotubes (CNTs) or Silicon Carbide
- Enhance material properties of ceramic
- Increases viscosity



Project

Figure 2. (A) Liquid pure polymer (B) Cured solid polymer matrix (C) Solid ceramic matrix

Basak Simal CNT Reinforced Ceramics 3D Printer

Polymer Extrusion

- Minimizing droplet size
- Surface Tension
 - $\theta_c = cos^{-1} \left(\frac{\gamma_{SG} \gamma_{SL}}{\gamma_{LG}} \right)$
 - Droplet geometry controlled by substrate, ambient, and material interface interactions
 - Only controllable variable is substrate

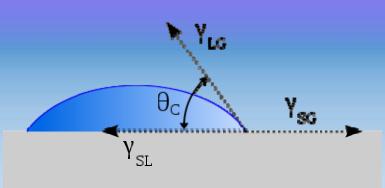


Figure 3. A liquid droplet on a substrate with interface angle labeled.

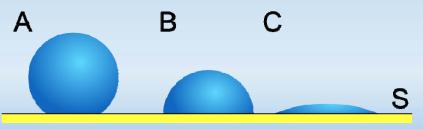
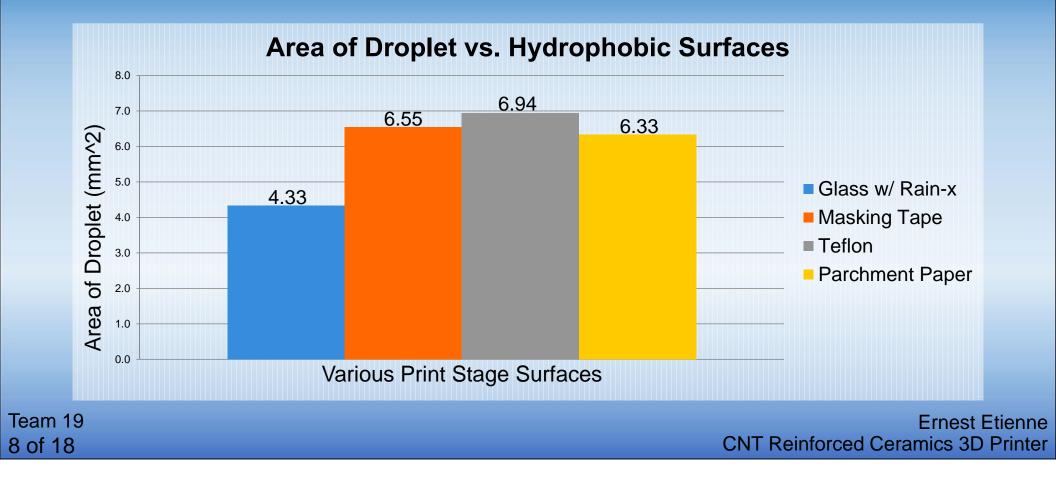


Figure 4. An example of varying droplet geometries and their contact angles with surface S; (A) large contact angle; (B) medium contact angle; (C) small contact angle

> Ernest Etienne CNT Reinforced Ceramics 3D Printer

Team 19 6 of 18


Polymer Extrusion

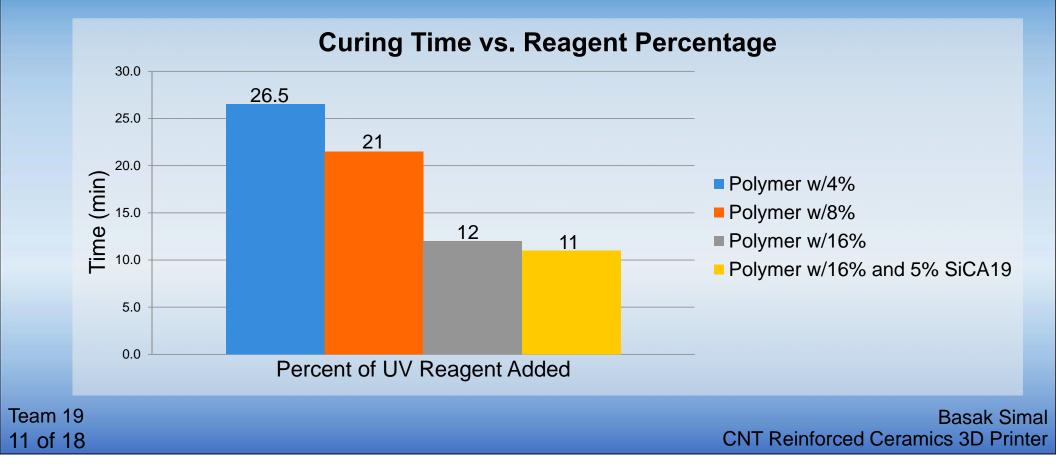
- Substrate Interface
 - 25 mL syringes controlled by a half step motor
 - Extrude polymer matrix onto varying print bases with different tips
 - Masking Tape
 - Teflon
 - Glass with RainX
 - Parchment Paper

Figure 5. Numerous tests on different surfaces

Ernest Etienne CNT Reinforced Ceramics 3D Printer

Polymer Curing

- LED Array (240 mW)
 - Power output insufficient to quickly cure material
 - Considering experimental parameters
 - Size of the array
 - Placement
 - Focus
 - Timing
- Higher power array ordered, defective
- Experiment: How does curing reagent effect curing time?



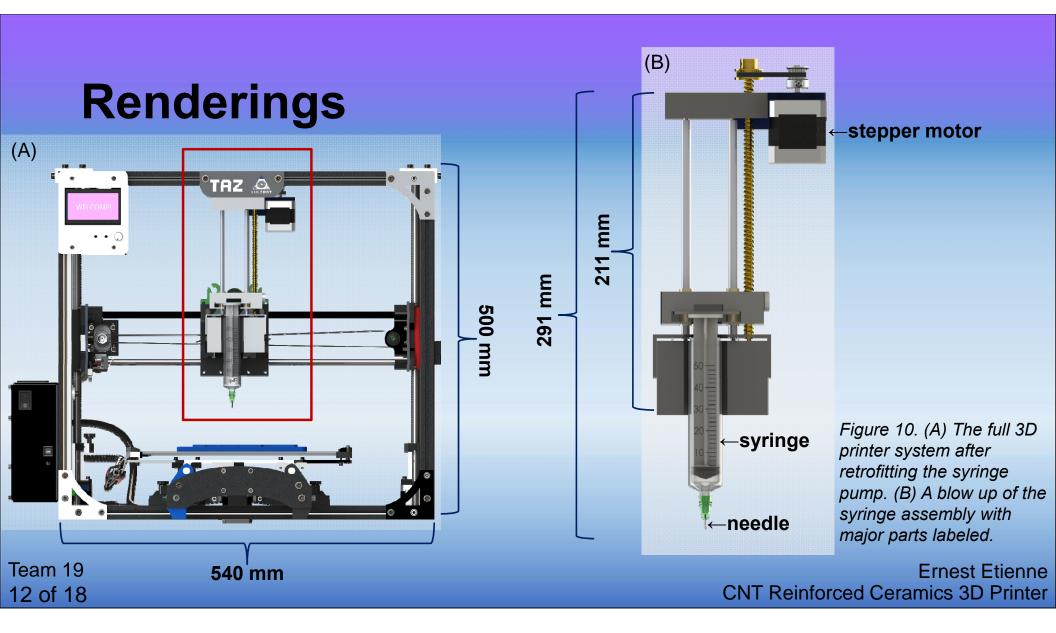

Figure 8. Testing the polymer curing time with UV LED bulbs.

Figure 9. The LED Array with 20 W power output.

Basak Simal CNT Reinforced Ceramics 3D Printer

Current Actions

- AME open house
- Printing parts for custom design
- Viscosity variation testing
 - Find optimal solution by varying viscosity
- Dedicated operating PC
- UV Curing System
 - LED Array

Team 19

13 of 18

- Lamp / Bulb
- OPM and Design Manufacturing Reports

Figure 11. Printing part of the mount for the syringe to be retrofitted onto the existing printer.

Budget

Date	Supplier	ltem	Total Cost
11/3/2014	Mouser Electronics	Arduino Mega	\$45.95
11/3/2014	Nicholas C. Lewis	Inkshield	\$66.00
11/3/2014	Digi-Key Corp.	UV Lights	\$58.06
12/1/2014	Lulzbot	3D Printer	\$1,995.00
12/11/2014	SIGMA- ALDRICH	Needles	\$83.30
12/11/2014	Amazon	Thermometer	\$29.99
12/11/2014	Amazon	Webcam	\$69.65
12/1/2014	Amazon	Tripod	\$22.75
1/14/2015	Lulzbot	ABS Filament	\$171.80
1/29/2015	Amazon	UV Lamp	\$89.00
1/29/2015	Amazon	UV Safety Glasses	\$64.80
1/29/2015	Amazon	Blunt Tips	\$9.90
1/29/2015	4inkjets	Cartridges	\$19.98
1/29/2015	Amazon	Syringes	\$9.50
		TOTAL	\$2,735.68

Team 19 14 of 18 Sonya Peterson CNT Reinforced Ceramics 3D Printer

Challenges Faced, and Lessons Learned

CNT Alignment

• Simply not possible in given time period

Curing Method

- Began with two potential methods
- How to incorporate within the frame
- Focusing the light
- Layer Adhesion
- Expect the Unexpected
 - Entire scope altered

Sonya Peterson CNT Reinforced Ceramics 3D Printer

Conclusion

- ~65% Complete
- Future Actions
 - Final Report
 - Webcam and PC Interface
 - Physically Retrofitting 3D Printer
 - Finalize material mixture
 - Graduate student training

Figure 12. (A) Webcam with gooseneck clamp. (B) Control interface on printer with a print in progress.

Team 19 17 of 18

CNT Reinforced Ceramics 3D Printer

References

- http://commons.wikimedia.org/wiki/File:Surface_tension.svg (Figure 4)
- http://nicholasclewis.com/projects/inkshield/ (Figure 6)

CNT Reinforced Ceramics 3D Printer